hopwise.model.sequential_recommender.gru4reckg

Classes

GRU4RecKG

It is an extension of GRU4Rec, which concatenates item and its corresponding

Module Contents

class hopwise.model.sequential_recommender.gru4reckg.GRU4RecKG(config, dataset)[source]

Bases: hopwise.model.abstract_recommender.SequentialRecommender

It is an extension of GRU4Rec, which concatenates item and its corresponding pre-trained knowledge graph embedding feature as the input.

entity_embedding_matrix
embedding_size
hidden_size
num_layers
dropout
freeze_kg
loss_type
item_embedding
entity_embedding
item_emb_dropout
entity_emb_dropout
item_gru_layers
entity_gru_layers
dense_layer
forward(item_seq, item_seq_len)[source]
calculate_loss(interaction)[source]

Calculate the training loss for a batch data.

Parameters:

interaction (Interaction) – Interaction class of the batch.

Returns:

Training loss, shape: []

Return type:

torch.Tensor

predict(interaction)[source]

Predict the scores between users and items.

Parameters:

interaction (Interaction) – Interaction class of the batch.

Returns:

Predicted scores for given users and items, shape: [batch_size]

Return type:

torch.Tensor

full_sort_predict(interaction)[source]

Full sort prediction function. Given users, calculate the scores between users and all candidate items.

Parameters:

interaction (Interaction) – Interaction class of the batch.

Returns:

Predicted scores for given users and all candidate items, shape: [n_batch_users * n_candidate_items]

Return type:

torch.Tensor